351 research outputs found

    Allelic Association, DNA Resequencing and Copy Number Variation at the Metabotropic Glutamate Receptor GRM7 Gene Locus in Bipolar Disorder

    Get PDF
    Genetic markers at the GRM7 gene have shown allelic association with bipolar disorder (BP) in several case-control samples including our own sample. In this report, we present results of resequencing the GRM7 gene in 32 bipolar samples and 32 random controls selected from 553 bipolar cases and 547 control samples (UCL1). Novel and potential etiological base pair changes discovered by resequencing were genotyped in the entire UCL case-control sample. We also report on the association between GRM7 and BP in a second sample of 593 patients and 642 controls (UCL2). The three most significantly associated SNPs in the original UCL1 BP GWAS sample were genotyped in the UCL2 sample, of which none were associated. After combining the genotype data for the two samples only two (rs1508724 and rs6769814) of the original three SNP markers remained significantly associated with BP. DNA sequencing revealed mutations in three cases which were absent in control subjects. A 3'-UTR SNP rs56173829 was found to be significantly associated with BP in the whole UCL sample (P = 0.035; OR = 0.482), the rare allele being less common in cases compared to controls. Bioinformatic analyses predicted a change in the centroid secondary structure of RNA and alterations in the miRNA binding sites for the mutated base of rs56173829. We also validated two deletions and a duplication within GRM7 using quantitative-PCR which provides further support for the pre-existing evidence that copy number variants at GRM7 may have a role in the etiology of BP. © 2014 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Published by Wiley Periodicals, Inc

    Genetic and social influences on starting to smoke: a study of Dutch adolescent twins and their parents

    Get PDF
    In a study of 1600 Dutch adolescent twin pairs we found that 59% of the inter‐individual variation in smoking behaviour could be attributed to shared environmental influences and 31% to genetic factors. The magnitude of the genetic and environmental effects did not differ between boys and girls. However, environmental effects shared by male twins and environmental effects shared by female twins were imperfectly correlated in twins from opposite‐sex pairs, indicating that different environmental factors influence smoking in adolescent boys and girls. In the parents of these twins, the correlation between husband and wife for‘currently smoking’(r = 0.43) was larger than for‘ever smoked’(r = 0.18). There was no evidence that smoking of parents (at present or in the past) encouraged smoking in their offspring. Resemblance between parents and offspring was significant but rather low and could be accounted for completely by their genetic relatedness. Moreover, the association between‘currently smoking’in the parents and smoking behaviour in their children was not larger than the association between‘ever smoking’in parents and smoking in their children. Copyright © 1994, Wiley Blackwell. All rights reserve

    Association study in the 5q31-32 linkage region for schizophrenia using pooled DNA genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several linkage studies suggest that chromosome 5q31-32 might contain risk loci for schizophrenia (SZ). We wanted to identify susceptibility genes for schizophrenia within this region.</p> <p>Methods</p> <p>We saturated the interval between markers D5S666 and D5S436 with 90 polymorphic microsatellite markers and genotyped two sets of DNA pools consisting of 300 SZ patients of Bulgarian origin and their 600 parents. Positive associations were followed-up with SNP genotyping.</p> <p>Results</p> <p>Nominally significant evidence for association (p < 0.05) was found for seven markers (D5S0023i, IL9, RH60252, 5Q3133_33, D5S2017, D5S1481, D5S0711i) which were then individually genotyped in the trios. The predicted associations were confirmed for two of the markers: D5S2017, localised in the <it>SPRY4-FGF1 </it>locus (p = 0.004) and IL9, localized within the IL9 gene (p = 0.014). Fine mapping was performed using single nucleotide polymorphisms (SNPs) around D5S2017 and IL9. In each region four SNPs were chosen and individually genotyped in our full sample of 615 SZ trios. Two SNPs showed significant evidence for association: rs7715300 (p = 0.001) and rs6897690 (p = 0.032). Rs7715300 is localised between the <it>TGFBI </it>and <it>SMAD5 </it>genes and rs6897690 is within the <it>SPRY4 </it>gene.</p> <p>Conclusion</p> <p>Our screening of 5q31-32 implicates three potential candidate genes for SZ: <it>SMAD5</it>, <it>TGFBI </it>and <it>SPRY4</it>.</p

    Press release - Commonwealth-State agreement on urban transport

    Get PDF
    Context: There is evidence of linkage to a schizophrenia susceptibility locus on chromosome 8p21-22 found by several family linkage studies.Objectives: To fine map and identify a susceptibility gene for schizophrenia on chromosome 8p22 and to investigate the effect of this genetic susceptibility on an endophenotype of abnormal brain structure using magnetic resonance imaging.Design: Fine mapping and identification of a chromosome 8p22 susceptibility gene was carried out by finding linkage disequilibrium between genetic markers and schizophrenia in multiply affected families, a case-control sample, and a trio sample. Variation in brain morphology associated with pericentriolar material 1 (PCM1) alleles was examined using voxel-based morphometry and statistical parametric mapping with magnetic resonance imaging.Setting and Patients: A family sample of 13 large families multiply affected with schizophrenia, 2 schizophrenia case-control samples from the United Kingdom and Scotland, and a sample of schizophrenic trios from the United States containing parents and 1 affected child with schizophrenia.Main Outcome Measures: Tests of transmission disequilibrium between PCM1 locus polymorphisms and schizophrenia using a family sample and tests of allelic association in case-control and trio samples. Voxel-based morphometry using statistical parametric mapping.Results: The family and trio samples both showed significant transmission disequilibrium between marker D85261 in the PCM1 gene locus and schizophrenia. The case-control sample from the United Kingdom also found significant allelic association between PCM1 gene markers and schizophrenia. Voxel-based morphometry of cases who had inherited a PCM1 genetic susceptibility showed a significant relative reduction in the volume of orbitofrontal cortex gray matter in comparison with patients with non-PCM1-associated schizophrenia, who, by contrast, showed gray matter volume reduction in the temporal pole, hippocampus, and inferior temporal cortex.Conclusions: The PCM1 gene is implicated in susceptibility to schizophrenia and is associated with orbitofrontal gray matter volumetric deficits

    Mutation screening of NOS1AP gene in a large sample of psychiatric patients and controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene encoding carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase (<it>NOS1AP</it>) is located on chromosome 1q23.3, a candidate region for schizophrenia, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Previous genetic and functional studies explored the role of <it>NOS1AP </it>in these psychiatric conditions, but only a limited number explored the sequence variability of <it>NOS1AP</it>.</p> <p>Methods</p> <p>We analyzed the coding sequence of <it>NOS1AP </it>in a large population (n = 280), including patients with schizophrenia (n = 72), ASD (n = 81) or OCD (n = 34), and in healthy volunteers controlled for the absence of personal or familial history of psychiatric disorders (n = 93).</p> <p>Results</p> <p>Two non-synonymous variations, V37I and D423N were identified in two families, one with two siblings with OCD and the other with two brothers with ASD. These rare variations apparently segregate with the presence of psychiatric conditions.</p> <p>Conclusions</p> <p>Coding variations of <it>NOS1AP </it>are relatively rare in patients and controls. Nevertheless, we report the first non-synonymous variations within the human <it>NOS1AP </it>gene that warrant further genetic and functional investigations to ascertain their roles in the susceptibility to psychiatric disorders.</p

    Comprehensive Gene-Based Association Study of a Chromosome 20 Linked Region Implicates Novel Risk Loci for Depressive Symptoms in Psychotic Illness

    Get PDF
    Background Prior genomewide scans of schizophrenia support evidence of linkage to regions of chromosome 20. However, association analyses have yet to provide support for any etiologically relevant variants. Methods We analyzed 2988 LD-tagging single nucleotide polymorphisms (SNPs) in 327 genes on chromosome 20, to test for association with schizophrenia in 270 Irish high-density families (ISHDSF, N = 270 families, 1408 subjects). These SNPs were genotyped using an Illumina iSelect genotyping array which employs the Infinium assay. Given a previous report of novel linkage with chromosome 20p using latent classes of psychotic illness in this sample, association analysis was also conducted for each of five factor-derived scores based on the Operational Criteria Checklist for Psychotic Illness (delusions, hallucinations, mania, depression, and negative symptoms). Tests of association were conducted using the PDTPHASE and QPDTPHASE packages of UNPHASED. Empirical estimates of gene-wise significance were obtained by adaptive permutation of a) the smallest observed P-value and b) the threshold-truncated product of P-values for each locus. Results While no single variant was significant after LD-corrected Bonferroni-correction, our gene-dropping analyses identified loci which exceeded empirical significance criteria for both gene-based tests. Namely, R3HDML and C20orf39 are significantly associated with depressive symptoms of schizophrenia (PempP-value and truncated-product methods, respectively. Conclusions Using a gene-based approach to family-based association, R3HDML and C20orf39 were found to be significantly associated with clinical dimensions of schizophrenia. These findings demonstrate the efficacy of gene-based analysis and support previous evidence that chromosome 20 may harbor schizophrenia susceptibility or modifier loci

    Cognitive and Socio-Emotional Deficits in Platelet-Derived Growth Factor Receptor-β Gene Knockout Mice

    Get PDF
    Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients

    Comparative Linkage Meta-Analysis Reveals Regionally-Distinct, Disparate Genetic Architectures: Application to Bipolar Disorder and Schizophrenia

    Get PDF
    New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for ”missing heritability.” However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS), alternative approaches robust to detection of low-frequency (1–5% MAF) and rare (<1%) variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods—GSMA and MSP—applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA) may be used to optimize low-frequency and rare variant discovery in the modern genomic era
    corecore